解一元二次方程说课稿(精选9篇)
篇1:解一元二次方程说课稿
方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。并且已经采取逐步渗透的方法来培养代数思维。例如:+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:
本课教材的三幅情境图,由浅入深,由具体到抽象,层层递进。第一幅情境借助平衡,让学生领悟等式;第二幅情境完成数量关系向等量关系的转化;第三幅情境引发学生思考,让学生从不同角度找到多种等量关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)在简单情境中寻找等量关系,并会用方程表示。
(3)经历从生活情景到方程模型的建构过程,进一步感受数学与生活之间的密切联系。
3、教学重难点:
(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:
学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:
为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:
(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
(二)探究新知,建立概念。
1、借助天平,启发思考。
我将教材情境动态化,通过FLANSH课件,让学生充分感知当天平两端都没放物品的时候天平左右两边是平衡的。当我们往天平的一端放上物品而另一端不放的时候,或者两端放的物品质量不等的时候,天平的两臂不平衡,表示两边物体的质量不相等。这时候左边大于右边,或右边大于左边。当我们经过调整,天平两臂再次平衡时,表示两边的物体质量相等,即左边=右边。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。同时,对情境中数据也进行了分批给出的处理。先给出了左边鱼食和小砝码的重量,让学生用一个数学表达式来表示天平左边的质量,再给出天平右边的质量,让学生列出等式。这样就较好地避免了学生习惯性的使用算术的思维方式,同时也顺利地进行了用数字表示向用符号表示的转化。在这一情境的教学中,借助天平这一载体,启发学生理解了平衡,认识了等式。
第二个主题图是本节课教学的核心内容。首先,我引导学生在情境中找出文字信息“4块月饼的质量一共是380克”。然后引导学生结合情境图,把这一信息转化为等量关系。4块月饼的质量是如何表示的呢?用数量关系“每块月饼的质量×4”来表示,“每块月饼的质量×4”表示的是4块月饼的质量,380克也表示4块月饼的质量,所以他们相等。从而完成数量关系向等量关系的转化,算术思想向代数思想的转化,改变学生的长达4年的惯性思维方式。
3、变换角度,深入思考。
第三幅情境图隐含着多样的等量关系,也正是引发学生数学思考的最佳情境。根据学生认识的深入程度,可适当让学生体会到等式的“值等”和“意等”,并放手让学生探究,根据不同的认识找到不同的等量关系,列出等量关系不同的同解方程。在教学中,先引导孩子发现情境中的基本相等关系:2瓶水的水量+一杯水的水量=一壶水的水量,并且列出等式2z+200=,在此基础上,再引导孩子发现其他的等量关系。在这一过程中,充分激发孩子探求知识的欲望,调动孩子思考的主动性和灵活性,从而找到多样化的等量关系,并进一步提高孩子解决数学问题的能力。
4、建立概念,判断巩固。
在前面教学的基础上总结、抽象出方程的含义。通过三道例题的简洁数学式子表达,让小组合作寻找他们的共同特点,从而建立方程的概念。“含有未知数”与“等式”是方程概念的两点最重要的内涵。并通过“练一练”让学生直接找出方程。
(三)生活应用,提高能力。
数学应该服务于生活,紧接着我让同学们根据直观图象列方程。这些题目都来自于生活实际,并且分别以现实情境图、线段、文字叙述、综合拓展为顺序,层层递进。学生在用方程表示直观情境里的相等关系后,他们在写方程时会更加关注方程的本质属性,从而巩固方程的概念。练习强调学生在按照“数量关系—等量关系—方程”这样一个过程,通过想一想,找一找,说一说,写一写等不同的形式学会用方程来表示生活中的实际问题,并体会到方程的作用,为以后运用方程解决实际问题打下坚实基础。
篇2:解一元二次方程说课稿
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第三课时“解方程(一)”,是在学生学习方程的意义和等式的性质的基础上进行教学。而今天学习的内容又为后面学习列方程解应用题做准备。今后学习多边形的面积、植树问题等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:知识与技能:
过程与方法:
体验迁移、分析、合作交流的学习方法。
情感态度与价值观:
感受方程与生活中的联系,激发学习兴趣,培养仔细认真的良好学习习惯。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是理解解方程的方法及检验,解决重难点的关键是引导学生确立解方程的一般思路。
二、说教法
1、演示操作法
借助多媒体,激发学生的学习兴趣。
2、观察法
为了体现学生的主体性,培养学生的合作意识,通过同桌合作、交流,自主探寻发现通过等式的性质来解方程。初步理解方程的解和解方程的含义。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学。
三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)基础训练,激趣导入。
上节课的学习中,我们探究了哪些规律?
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)认准目标,指导自学。
1、那我们学习解方程就要充分利用等式的两个基本性质。
板书课题:解方程(一)
2、学生自学教材67~68页例1、例2、例3内容,让学生初步掌握用等式的性质解方程的原理,学完后记录疑问。
(三)合作学习,引导发现。
1、出示课件例1,你了解了哪些信息?怎样列方程?
x+3=9
2、如何解这个方程呢?课件出示利用等式的性质分析的图示。
学生观察图画,同桌交流自己的观察结论,并通过讨论明确解方程的方法。
x+3=9
解:x+3-3=9-3
x=6
3、点名学生汇报,其他同学可以补充。
老师归纳:解方程实质就是把方程转化成x=a的形式,要注意解方程步骤的规范书写。
4、认识、区分方程的解和解方程并学会验算方程的解。
5、学生独立完成例2、例3的内容,并相互检验对方的结果。
老师再次强调要注意解方程和验证步骤的规范书写。
(四)变式训练,反馈调节。
课本67~68“做一做”。
强化重点,巩固新知,培养学生良好的学习习惯。
(五)分层测试,效果回授。
随堂练习册36页《解方程(一)》第一、二、四、五大题
(六)课堂小结
梳理知识形成完整知识体系
(七)布置作业
1、课本练习十五第1题。
篇3:选择合适的方法解一元二次方程
一、适合用直接开平方法求解的方程
例1用直接开平方法解下列方程.
(1)x2-4=0;(2)(x+3)2-2=0;(3)4(x-2)2=9(x+3)2.
【分析】(1)将方程化为x2=4,然后两边直接开平方;(2)将(x+3)2-2=0化为(x+3)2=2的形式,然后两边直接开平方;(3)把(x-2)和(x+3)分别作为一个整体,然后考虑使用直接开平方法.
解:(1)移项,得x2=4.
因为x是4的平方根,所以x=±2,
即x1=2,x2=-2.
(2)移项,得(x+3)2=2.
(3)根据平方的性质有:2(x-2)=3(x+3)或2(x-2)=-3(x+3),
即:x1=-13,x2=-1,
【点评】形如x2=b、(x-a)2=b、(x-a)2=(x-b)2的方程适合用直接开平方法来求解.
二、什么时候选用配方法解一元二次方程
例2(1)x2-4x=396;(2)3x2-2x-3=0.
【分析】利用配方法解一元二次方程的步骤:
(1)把方程中含有未知数的项移到方程的左边,常数项移到方程的右边;
(2)把二次项系数化为1;
(3)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式,右边是常数;
(4)如果方程的右边是一个非负数,就用直接开平方法求出它的解;如果方程的右边是一个负数,那么这个方程无解.
解:(1)∵x2-4x=396,
∴x2-4x+4=400,
∴(x-2)2=400,
∴x-2=±20,
∴x1=-18,x2=22;
【点评】对比这两个方程可以发现,第一个方程用配方法方便些,第二个方程较繁琐,对于具备形如完全平方式的雏形的方程用配方法比较方便.
三、因式分解解哪类一元二次方程更便捷
例3解方程:(1)(4x+2)2=x(2x+1);
【点评】这两个方程显然用因式分解法比较简便,为什么呢?因为这两个方程有一个共同的特征,能通过移项将方程右边化为0,而左边可通过因式分解化成乘积的形式.常见的适合因式分解法的方程的基本形式有x2-a2=0、x2+bx=0、x2-(a+b)x+ab=0.
四、公式法是把“万能钥匙”,它对任何形式的一元二次方程都适用
【点评】运用公式法解一元二次方程的时候,只需找准方程的a、b、c的值,即先把方程化为一般形式.公式法可以求任何形式的一元二次方程的解,不过由于公式法的运算量较大,因此如果能使用其它方法,尽可能选用其它方法来解.但如果方程已经化成一般形式,则选用公式法较为简便.
那么选择合适的方法来解一元二次方程的考虑方式如何呢?
(1)如果题目适合使用直接开平方法解方程,那就直接使用开平方法解方程;
(2)能使用因式分解方法求解的一元二次方程,就不要使用公式法解决;
(3)不易使用因式分解法解的方程,且方程中的系数绝对值较大时,考虑使用配方法解方程;
篇4:列方程解应用题说课稿
一、教材分析
列方程解应用题是初中数学教学的重要内容,它既是重点也是难点,在解各种类型的方程或方程组时,都要进行由相应的应用题如何列出这些类型的方程或方程组这一步,这是因为它既是数学联系实际的一个重要方面,又是培养学生分析问题、解决问题能力的一个主要环节。按课本安排出租车计费的内容应放在第一节课与劳力调配问题一起讲,但学生进入中学以来第一次接触“列方程解应用题”,本身接受就有一定困难,如果放到第一节一下讲两个类型,学生更接受不了,练习册中又出现了计算水费问题,也需要进行分段计算,于是,我把这类分段计算的问题单作为一节课,作为一个类型去讲。
二、教学目标
根据新课标的要求,及七年级学生的认知水平我特制定本节课的教学目标如下:
1.学会列一元一次方程解决水费和出租车计费问题;
2.通过分析出租车计费、水费中的数量关系,经历运用列方程的方法解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
3.能说出列一元一次方程解应用题的一般步骤;
4.培养学生分析问题、解决实际问题的能力;
5.体会数学来源于生活,来源于实践,又服务于生活,认识到学习数学的用处,增强学习数学的目的性和用数学的意识;增强节约用水的意识。
三、教学重难点的确定
教学重点是:列一元一次方程解决水费和出租车费的应用题。
教学难点是:如何分析问题,挖掘题目中的等量关系。
四、学情分析
1.知识掌握上,七年级学生刚刚学习了一节“列方程解应用题”,对列方程解应用题的优越性还没有充分体验到,还停留在愿意用小学的算术方法解应用题上。
2.学生学习本节课的知识障碍。对于列方程解应用题的方法不太理解,因为这些题,学生用算术方法很快就能算出来。所以老师要用找相等关系的方法引导学生列出方程去解。
3.由于我所教两个班的学生好动,爱发表意见,希望得到老师的表扬等特点,所以在教学中,一方面用《北京日报》的报道引入课题,引起学生的兴趣,使他们注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
五、教学策略
学生有时不明白学数学有什么用,本节内容正好与实际联系特别紧密。为了使课堂生动、有意义,我以《北京日报》中的一段报道引出本节课要解决的问题,引起学生兴趣,本节课中水价的计价规定,属于政府行为,目的是提倡节约用水,正好与现在我们大力提倡节约每一滴水联系起来,起到寓教的作用。例2是与水费计价类似的出租车计费问题,也是与学生实际联系特别紧密的应用题。这两个例题学生都非常感兴趣,选择这两个例题,课堂上可充分调动学生的积极性,让他们利用生活中的经验来分析题目,使学生体验到数学与我们的生活联系得是那么紧密,生活中离不开数,数学来源于生活,反过来又应用于生活,认识到学习数学的用处,增强学习数学的目的性和用数学的意识。激发学生学习数学的愿望。
六、教学程序设计:
1.引用报纸上的报道引出本节课的课题
引用《北京日报》的关于“北京市水资源匮乏”、“北京市一年漏掉的水相当于新建一个自来水厂全年的产量”的
报道,使学生将注意力集中到课堂上,“水资源和数学有什么关系?”等问题会充斥很多学生的脑海。于是,我首先问学生:“北京这么缺水,我们应该怎样做?”学生们说出:“应节约用水”、“节水应从我做起”等等。“作为我们每一个公民应节约每一滴水,从政府的角度来讲,应采取一些措施,鼓励居民节约用水。有些城市就采取了阶梯式水价,如果北京市也采取这种收水费的方式你会计算自家的水费吗?”引出例1。
2.分析问题,解决问题
讲解例1时,首先让学生认真读题,明确水费怎样计价,引导学生说出“分段计价”,再问学生按不同的单价计价的水量应怎样表示,尤其是超出标准水量如何表示是关键。分析后,列出表格,让学生填表,从而全面地对例1作出了分析,找出列方程的依据——题目中的相等关系。通过这种分析的方式,让学生体会到分析应用题要分析“问题中都涉及了哪些量?”、“哪些是已知量、哪些是未知量?”、“如何表示已知量和未知量?”“题目中的相等关系是什么?”,列表分析使各个量之间的关系更明确,学生易于接受,这种方法能够帮助学生正确地分析问题,从而列出方程,解决问题。整个分析过程作完后,让学生自己写出整个解题过程,并展示学生的解题过程,从而规范解题格式。
例2是出租车计费问题,因为出租车计费也同样需要分段计算,类似于例1,于是我主要让学生自己去分析,然后老师再根据出现的问题进行指导。两个例题解决后,引导学生根据例题的解决过程总结出“列方程解应用题的一般步骤”。
3.反馈矫正
为巩固本节的教学重点让学生独立完成:练习册P59/1。这个题还是一个分段计价的计算水费的问题。
4.归纳小结,强化思想
本节课的课堂小结设计了两个问题:1.本节课我们共同研究的问题是什么?他们的共同点是什么?(共同点:由于单价的变化,必须要分段计算。)2.通过本节课学习,你懂得了什么?有什么收获?目的是让学生说出自己本节课的收获与体会。我的愿望是让学生说出知识上的收获和节水意识上的收获。
5.布置作业
为面向全体学生,安排如下:
(1)全体学生必做课本P119/2、P134/10
(2)布置一个选做题(分三段计价):乘某市的出租车起价10元(即行驶4千米以内都需付10元车费),达到或超过4千米以后,每增加1千米加价1.2元(不足1千米的部分按1千米计算)。超过15千米,加收50%的空驶费。现在小红乘这种出租车从甲地到乙地,支付车费34元。求甲、乙两地之间的路程大约是多少?
总之,我在教學过程中,能够注意发挥学生的主体作用,让学生通过自主探究、体验分析问题的全过程,真正掌握列方程解应用题分析问题的方法。我认识到教师不仅要叫给学生知识,更要注重培养学生良好的数学素养和学习习惯,让学生学会学习。
篇5:解分式方程说课稿
我说课的内容是八年级下册第三章第四节《分式方程》第二课时的内容。我将从教材分析、学情分析、目标分析、教法与学法、教学过程、板书设计、教学评价等七个方面阐述我对本节课的设计意图。
一、教材分析:
1、教材中的地位和作用
《分式方程》是八年级数学下册第三章第四节第二课时的内容。本节是继分式、分式的乘除法、分式的加减法之后在分式方程的应用之前的内容,而第一课时为我们介绍了什么叫做分式方程,对于一个方程而言,我们主要研究它的解法,所以这节课就是对这一内容进行深入的分析和研究。从第一课时的内容我们可以看到,在很多应用题里面会用到分式方程,因此学习如何解分式方程可以解决很多实际的问题,而在解分式方程的过程当中,体现了数学中“转化”的思想,这种思想在数学上的应用是相当广泛的。其次,解分式方程还涉及到找最简公分母、去分母、分解因式以及分式的相关运算等内容的综合运用,因而,它在数学中起着承上启下、巩固提升旧知识的作用,对于学生而言,将新旧知识融合在一起进行综合性的运用,能提高其解决问题的能力。
2、本课主要知识点:
(1)解分式方程的一般步骤;(2)什么叫做增根;(3)增根产生的原因。
二、学情分析
对于我所教的学生而言,由于基础不是很好,有一部分学生连找最简公分母、去分母都非常困难,而还有很多学生对于解一个一元一次方程也时常出错,所以解分式方程的内容必须放慢速度,让学生在课堂上,老师的指导下多加练习。另一方面,结合“DJP”自主教学模式,希望能让学生的自主学习能力、合作交流能力、主动参与能力、勤于动手能力、上台讲解能力和互相评价能力有所提高,因此,本节可采用自主学习、小组合作、讲解评价等形式来完成。而班上的学生表达能力有限,能够表述清楚一个问题并且让其他学生听懂的人就只有极少数的几个。还有几个在老师的引导下能大概进行表述,但时间用得比较多,这样一节课的内容就不能完成。其次,班上的学生中有一部分胆子特别小,说话声音小得几乎听不见,根本就不敢当着全班学生说出自己的看法和见解。所以在采用“DJP”自主教学模式的时候需要多加帮助,在关键和重要的地方由老师适时引导,学生进行阐述。
三、目标分析
基于本节课的重要地位及新《课程标准》中的要求和我所教学生的情况,确定教学目标如下:
1、学习目标:(1)知识技能目标
①明确解分式方程的一般步骤.②会将简单分母和分母互为相反数的分式方程化为一元一次方程 ③会检验根的合理性(2)过程方法目标: 经历“探究分式方程解法、探索解的合理性”的过程,发展学生分析问题、解决问题的能力,使其体会数学的转化思想。(3)情感态度目标: 在活动中培养学生乐于探究、合作学习的习惯,培养学生的探究意识。
2、重点、难点:
学习重点:初步掌握分式方程的解法 学习难点:理解分式方程验根的必要性
突破难点的方法:引导学生对解分式方程的过程进行讨论、探究,发现增根产生的原因。
四、教法与学法分析
从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体。是否能调动学生的参与,将成为一节课成功与否的关键。学案,是引导和帮助学生自主学习、探究的方案。先引导学生从旧知识入手,然后提出问题,以此来激发学生的好奇心和探求欲望。借助学案,以学生的学为出发点,把学习的内容、目标、要求和学习方法与探究等要素有机地融入到学习过程之中。学生通过合作探求,发现分式方程的解法,归纳出一般步骤并且通过学案上的例题可再次体会解法。利用学案,各小组同学互相讨论交流,各自提出自己的见解和看法,达到自主学习、合作交流、勤于动手和互相评价的目的。
五、教学过程分析
教学过程的设计是根据学生的实际情况,在教法、学法的确定下,来完成教学目标为目的。
(一)、引入新课:
1、旧知识复习:什么叫分式方程?
分母中含有未知数的方程叫做分式方程。
2、辨别以下两个方程哪一个是分式方程: 和
在横线上填“+”或者“-”
找出以下分式中各分母的最简公分母:
设计意图:引导学生继续区分整式方程与分式方程的区别,找多项式的相反数,学会如何找各分母的最简公分母,为解分式方程的第一步“去分母”做铺垫。
(二)、进入新课:
1、你能求出方程的解吗?
解:3(3x2)
9x – 3 = 12 – x + 2
10x = 17
设计意图:先解一个含有分母的在形式上类似于分式方程一元一次方程,学生容易理解并且能够解出来,为引出分式方程解法作过渡。
2、你能设法解出这个方程吗?
总结:解上面的方程用了哪些步骤? 去分母 去括号 移项
合并同类项
未知数系数化为1
设计意图:提出问题,引起学生兴趣,通过学生小组讨论交流探索出解分式方程的方法,并且由解的过程归纳出一般步骤,这是一个自主学习的过程,能提高学生的自学能力。
3、讨论交流以下方程的解法:
各分母的最简公分母为
(x-2)。
解:去分母,方程两边同时乘以(x – 2),得
1–x =-1-2(x-2)
解这个方程得
x = 2
思考:(1)将 x = 2 代入原方程,左右两边是否相等?(2)观察解法是否有错?
(3)为什么会产生这样的结果? 请大家阅读教材,找出答案。阅读教材:
增根:使原分式方程的分母为____零____的根称为原方程的__增__根__。产生增根的原因:在方程的两边同时乘以了一个可能使分母为零的整式。思考:(1)既然解分式方程会产生增根,我们在解出根以后应该怎么做? 验根
(2)该如何检验?
将解出的根代入最简公分母,若使最简公分母为零,则是原方程的增根;若不为零,则是原方程的根。
设计意图:由一个个的问题引导学生探索发现增根的概念,以及产生增根的原因,并且探求如何检验一个根是否是原方程的增根。发展学生分析、解决问题的能力。
4、课堂练习:
设计意图:了解分式方程的解法和增根的概念后,为学生提供即时的具有梯度性的练习,及时巩固所学的新知识,加深对分式方程和增根概念的理解,达到初步掌握分式方程解法的目的。
5、课堂小结:
(1)解分式方程的一般步骤是________________________________________。
(2)什么是增根_____________________________________,产生增根的原因是__________________________________________________。
(3)解分式方程的基本思想是将其转化为______________________,转化的方法是在方程的两边乘以各分母的________________。
设计意图:帮助学生回忆本课所学的内容,理清思路。
6、作业:
(1)习题3.7
1,2题(2)复习题
4题
六、板书设计
规范的板书设计能够让学生容易记住当堂课所讲的内容,所以板书的设计要做到条理清晰,体现知识与知识之间的联系。故而设计板书如下:
一、复习:(1)什么叫分式方程?
(2)如何找分式中各分母的最简公分母?
二、解分式方程的一般步骤
三、增根:(1)概念(2)产生的原因
四、解分式方程的基本思想
七、教学评价
评价是保证和提高认知活动有效性的心理过程,它使得学生所建立的关于知识的个人意义经受了某种检验而变得更加清晰、明确、合理。学生在对他人的讲解进行分析评判时,要用自己的语言说出个人的看法和观点,就需要对知识进行加工、改组、归纳、概括,从而提高了学生的归纳概括能力。通过评价,还可使学生认识到所学知识的重要性,体会到在应用中的有效性,从而使他们对知识产生一种向往的感觉经验。再则,通过自我评价,可以不断反思调节自己的学习策略与方法,不断的丰富和积累数学活动经验。本节课既注重了对基础知识的评价,又注重了对学生探求分析能力的评价:
对基础知识的评价。如:解分式方程的一般步骤,会检验根的合理性等。
对学生探求分析能力的评价。如:探究分式方程的解法,增根产生的原因等。
篇6:解方程二说课稿
今天我说课的题目是《解方程(二)》
一、说教材
1.教材内容和地位:
《解方程(二)》是 北师大版数学四年级下册第五单元解方程这部分知识,通过天平游戏,让学生发现等式两边都乘一个数(或除以一个不为零的数),等式仍然成立的性质。利用探索发现的等式的性质,解决简单的方程,培养学生分析、推理你能力。学生通过天平游戏,经历了从生活情境的方程模型的建构过程。探究等式的性质,让学生体会数学的价值,激发学生学习数学的兴趣。
2.学情分析:
为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行调研,从调研结果可以看出学生对解方程是有一定认识的。
3.教学目标:
根据教材和学情我制定以下三个教学目标:
(1)能根据具体情境,灵活运用解决生活中一些简单的问题,使学生感受到数学与生活的.密切联系。
(2)培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
(3)培养学生合作意识和主动探求知识的学习品质和实践能力。
4.教学重点:知道等式两边同时乘以一个数(或除以一个不为0的数),等式仍然成立 。
5.教学难点:等式性质(二)的推导。
6.教具准备:课件、天平
二、说学法
新课标指出:学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。我采用的教学方法:采用操作和演示、讲练相结合的教学方法。以突破教学的重难点。
三、说教法
新课标明确指出:数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发和因材施教,为学生提供充分的数学活动机会。教无定法,贵在得法,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生正在理解和掌握基本的数学知识与技能、数学思想与方法,得到必要的数学思维训练,获得广泛的数学活动经验。为让学生能轻松愉快地学,积极主动探索、根据学生实情,我主要选用讨论法、以手动操作,自主探索,合作交流,直观演示等方式为主,再加上老师的适时点拨,学生间的互相补充、评价,完成教学目标。
四、说教程
为有效的落实教学目标、突破教学重点、难点、在本节课中,我共设计了四个环节:
(一)谈话导入,初步感受
(二)探求新知,动手操作
(三)拓展提高,巩固应用
(四)归纳总结,回顾整理,
第一环节:创设情景,引入新课。
在课前与学生谈话,通过掌声和笑容来缓解师生的紧张情绪,从而带着愉悦心情走进新课学习,可见教师在努力向幽默型教师转化,为形成良好的师生关系进行自我调整。
第二环节:动手操作,探求新知
“问答式”“师生一问一答”的形式比较多,根据课题研究我以学生为主,在设计教学时,以课堂提问和追问为主,激发学生上课回答问题的兴趣和积极性。如:
1.推想
师:等式两边都乘一个数(或除以一个不为零的数),等式还成立吗?先独立思考,再在小组内交流自己的想法。
2.验证
1) 师:既然我们有两种不同的答案,那我们来做个实验验证一下好吗?左侧放的砝码的质量用X表示,右边放5克的砝码,天平两边平衡。
师:天平平衡,可以用什么样的数学算式表示?
师:左边加2个x克砝码,右边也加2个5克的砝码,你们发现了什么?(平衡)
师:左边加6个x克砝码,右边也加6个5克的砝码,还会平衡吗?(平衡)
师:通过刚才的观察和你所列的算式,谁能用一句话概括出以上的规律?
师:那同学们想一想,如果两边都除以一个数,等式还会成立吗?下面同学们用天平验证一下。
引导学生观看课本右边主题图:左边2个X克砝码,右边2个10克砝码。
师:怎样用算式表示?
师:左边去掉一半的质量,右边也去掉一半的质量,天平仍然平衡,用算式如何表示变化过程?
5)师:对比两道算式,你有什么发现?
师:如果等式两边能都除以零呢?0能做除数吗?
小结:追问是老师在学生回答问题的过程中或者回答问题结束之后的进一步引导,它的目的是进一步发现问题、解决问题,使问题的交流走向深入。成功的追问本质上是一种高效点拨。追问是一种教学策略,追问的问题一定是有意义的、有趣的,同时也是有挑战性的。让学生抓住数学的本质,为后续学习打好基础。
第三环节:巩固应用,拓展提高
“含有未知数的等式叫方程”,这是方程的定义。本节课在通过不断地摆天平中建立方程的模型。在对“未知数”的处理上,教师没有局限于未知数,而是多方式表达,如可以用文字,也可以用图形、符号、字母等等,这样就可以起到良好的建模。学生不再向以往学生那样,认为“含有字母的等式”才是方程。但此处教师能够在几种方式中再进行优化,让学生体验到由于文字不简洁、图形符号具有局限性等因素,而字母更具有优势,于是在通常情况下我们都采用字母来表示未知数。对于这方面,我在课后进行的修补,但能够融入到新授课中就比较合适。
第四层次:归纳总结,回顾整理。
在教学重点难点基本突破后,让学生及时巩固,然后全班交流。
1、基础练习,完成课后1、2题, 习题设计体现层次性、典型性、探究性,突出教学生活化的教学理念。
2、专题训练,生活中问题
3、在计算中总结规律并感受学习数学的魅力和价值。
在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用数学的思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有多收获,使学生感受到学习数学的快乐和价值。
最后说板书:
篇7:五年级数学《解方程》说课稿
1、教学内容:
小学五年级数学上册P57,及“做一做”,练习十一第4题。
2、教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
3、教学目标:
(1)、结合具体的题目,让学生初步理解方程的解与解方程的含义。
(2)、会检验一个具体的值是不是方程的解,掌握检验的格式。
(3)、进一步提高学生比较、分析的能力。
4、教学重点及难点:
比较方程的解和解方程这两个概念的含义
二、说教法学法
(一)创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
(二)突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
(三)自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题(1)什么叫方程的解?请举例说明。(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
(四)使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
三、说教学过程
一复习引入
我们前边学了天平平衡的道理,我们先来做一个天平平衡的游戏,老师说,你来对:我在天平左边放一个苹果,要想使天平平衡,你应该怎么做?再放两个梨呢?
学习天平平衡的道理有什么作用呢?通过今天这节课的学习你就会发现它的作用了。
二教学什么是方程的解
出示课本57页插图,问:从图上你能看到什么信息?你能根据图中告诉的等量关系列一个方程吗?
板书:100+X=100
问:X表示什么?X可以是任何一个数吗?为什么?
X是什么数时,方程左右两边才相等呢?你是怎么算出来的?
教师总结:刚才同学们通过多种方法都算出了X=150时,方程左右两边相等,像这样,使方程左右两边相等的未知数的值就叫方程的解。
加深记忆:问X=120是这个方程的.解吗?为什么?根据你的理解什么才是方程的解呢?
判断:
X=3是方程3X=15的解吗?X=2呢?为什么?
刚才同学们找出这个方程的解得过程叫做解方程,今天这节课我们重点利用天平平衡的道理来解方程。(板书课题:解方程)
三解方程
1利用这道题讲解解方程的格式
解方程有固定的格式,教师边讲格式边完成100+X=100的解方程的完整步骤。
2学生独立尝试做例1
(1)出示例1主题图:请你用一句话说一说这幅图所表示的内容。
(2)学生叙述图意,并列出方程。
(3)激趣:你能用方程平衡的原理来解方程吗?
(4)学生尝试解决χ+3=9。教师巡视,指名板演。
(5)板演的学生讲解解决问题的思路方法
(6)观察黑板上同学的板书,你有什么发现,你认为还有什么需要同学们注意的地方吗?
(7)x=6是不是方程的解呢?(需要进行检验)
(8)学生自学课本,掌握方程检验的方法和格式。
A方程是怎样验算的?
B它的格式有什么特殊的要求?
四迁移练习:x+8=10x-8=10
1.全班齐练,指名板演。
2.评价分析讲解。
对比提升:x+8=10x-8=10
1.观察两道方程的解答过程,你有什么发现?(x加几,我们就减几;x减几,我们就加几。)
2.为什么要这样做?
3.方程的左边发生了变化,为了使方程成立,方程的右边又应该怎样做?这样做的依据是什么?
五回顾总结
篇8:一元二次不等式的解法(说课稿)
关键词:数形结合;二次函数
一、教材分析
1.地位和作用。本课是五年制高等师范教材南京大学出版社《数学》教材第一册第二章第二节的教学内容,从知识结构看:它是一元一次不等式的延续和拓展,又是以后研究函数的定义域、值域等问题的重要工具,起到承前启后的作用;
从思想层次上看:它涉及到数形结合、分类转化等数学思想方法,在整个教材中有很强的基础性。
2.教材内容剖析。本节课的主要内容是通过二次函数的图像探究一元二次不等式的解法。教材中首先复习引入了“三个一次”的关系,然后依旧带新,揭示“三个二次”的关系,其次通过变式例题讨论了△=0和△<0的两种情况,最后推广一般情况的讨论,教材的内容编排由具体到抽象、由特殊到一般,符合人的认知规律。
3.重难点剖析。重点:一元二次不等式的解法。难点:一元二次方程、一元二次不等式、二次函数的关系。难点突破:(1)教师引导,学生自主探究,分组讨论。(2)借助多媒体直观展示,数形结合。(3)采用由简单到复杂,由特殊到一般的教学策略。
二、目的分析
知识目标:掌握一元二次不等式的解法,理解“三个二次”之间的关系
能力目标:培养学生“从形到数”的转化能力,由具体到抽象再到具体,从特殊到一般的归纳概括能力。
情感目标:在自主探究与讨论交流过程中,培养学生的合作意识。
三、教法分析
教法:“问题串”解决教学法
以“一串问题”为出发点,指导学生“动脑、动手、动眼、动口”,参与知识的形成过程,注重学生的内在发展。
学法:合作学习(1)以问题为依托,分组探究,合作交流学习。(2)以现有认知结构为依托,指导学生用类比方法建构新知,用化归思想解决问题。
四、过程分析
本节课的教学,设计了四个教学环节:
创设情景、提出问题
问题1.用一根长为10m的绳子能围成一个面积大于6m2的矩形吗?“数学来源于生活,应用于生活”,首先,以生活中的一个实际问题为背景切入,通过建立简单的数学模型,抽象出一个一元二次不等式,引入课题。
设计意图:激发学生学习兴趣,体现数学的科学价值和使用价值。
自主探究,发现规律
问题2.解下列方程和不等式。①2x-4=0 ②2x-4>0 ③2x-4<0
归纳、类比法是我们发现问题、寻求规律,揭示问题本质最常用的方法之一。寻求一元二次不等式的解法,首先从一元一次不等式的解法着手。展示问题2。学生:用等式和不等式的基本性质解题。教师:还有其他的解决方法吗?展示问题3。
问题3.画出一次函数y=2x-4的图像,观察图像,纵坐标y=0、y>0、y<0所对应的横坐标x取哪些数呢?
学生:发现可以借用图像解题。此问题揭示了“三个一次”的关系。
设计意图:为后面学习二次不等式的解法提供铺垫。
问题4用图像法能不能解决一元二次不等式的解呢?已知二次函数y=x2-2x-8.
(1)求出此函数与x轴的交点坐标。
(2)画出这个二次函数的草图。
(3)在抛物线上找到纵坐标y>0的点。
(4)纵坐标y>0(即:x2-2x-8>0)的点所对应的横坐标x取哪些数呢?
(5)二次函数、二次方程、二次不等式的关系是什么?
教师:展示问题4。此环节,要注意下面几个问题:
(1)启发引导学生运用归纳、类比的方法,组织学生分组讨论,自主探究。(2)及时解决学生的疑点,实现师生合作。(3)先让学生自己思考,最后教师和学生一起归纳步骤。(求根—画图—找解),抓住问题本质,画图可省去y轴。教师抓住时机,展示例题1,巩固方法(△>0的情况),规范步骤,板书做题步骤,起到示范的作用。设计意图:运用“解决问题”的教学方法,使每位学生参与知识的形成过程,体现了教师主导学生主体的地位。
变式提问,启发诱导
方程:ax2+bx+c=0的解情况函数:y=ax2+bx+c的图象
不等式的解集
ax2+bx+c>0ax2+bx+c<0
⊿>0
⊿=0
⊿<0
教师:展示例题2(1).-x2+x+6≥0(2).x2-4x+4<0(3).x2-x+3>0。学生:尝试通过画图求解。此环节要注意:引导学生把不熟悉的问题转化为熟悉的问题解决;对于△=0,△<0的情况,启发学生用数形结合的思想方法关键在于画好图像,贵在“结合”。设计意图:通过探索、尝试的过程,培养了学生大胆猜想,勇于探索的精神。
自我尝试,反馈小结。
教师:展示练习题,把学生分成两个小组,要求当堂完成,看哪个组做的好做的快。教师对出现的问题及时反馈。同时,进一步启发引导学生将特殊、具体问题的结论推广到一般化。展示表格,学生:填写内容。
学生理解了“三个二次”的关系,得到一般结论应该是水到渠成。最后,教师做本节课的小结,布置作业。设计意图:激发了学生的求知欲,培养了学生的主动参与意识。
五、评价分析
1.重视学生学习的结果评价,更重视过程评价。2.本节课贯彻了新课程的理念,教学形式开放,体现了“教师主导,学生主体”的教学关系。以上是我对本节课的粗浅认识,如有不妥之处,恳求各位专家、各位同仁批评指正。
篇9:解一元一次方程-去括号说课稿
尊敬的各位评委老师:
大家好!我今天的说课课题是“解一元一次方程----去括号”。本节课是人教版七年级上册第三章第二节《解一元一次方程——去括号》,以下我就从教材分析、教法与学法分析、教学过程、课后反思四个方面来介绍这节课:
一、教材分析
1、教材的地位及作用
这节课既是第三章知识的深化,又为我们以后学习一元一次方程的应用提供研究和学习的方法,同时也为含有分母的一元一次方程的计算做好准备,具体的说,本节课就是要通过对去括号的掌握和理解,让学生形成系统的解一元一次方程的知识结构,学会学习解一元一次方程的方法,因此本节课的重要性是不言而喻的。
2、学情分析
这节课是学生在学习了去括号法则和移项之后,进一步系统学习解一元一次方程的有关知识。故本节课只是去括号法则在一元一次方程中的延伸。再者,七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中结合学生的这些特征是上好这节课的关键所在。
基与上面对教材的分析,考虑到学生已有的认知结构、心理特征,我确定以下教学目标、教学重点和难点:
3、教学目标:
【知识目标 】掌握去括号解一元一次方程的方法,能熟练求解一元一次方程,能判别解的合理性。【能力目标】(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;
(2)进一步让学生感受并尝试寻找不同的解决问题的方法。
【情感目标】(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成良好的习惯。
(2)通过学生间的相互交流、沟通,培养他们的协作意识。
4、教学重点与难点
【重点】用去括号解一元一次方程。【难点】解一元一次方程是如何正确的去括号
二、教法、学法分析
1、教法:为了达到本节课的教学目标,在教学过程中,我注重体现教师的引导和学生的主体地位,采用引导、探究法为主的教学法,尽力引导学生成为知识的发现者,为学生创设情境,不断激发学生的求知欲望和学习兴趣,从而达到提高学习和能力的目的。
2、学法:根据以上的分析,我设计的学生学法是:回顾→观察→探索讨论→归纳→练习→拓展。
三、教学过程
为达到教学目标,充分发挥学生的主体作用,激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下:
(一)回顾旧知,承前启后
1、解一元一次方程时,最终结果一般是化为哪种形式?(x=a)
2、一元一次方程的解法我们学了哪几步?移项 → 合并同类项 → 系数化为1
3、移项,合并同类项,系数为化1,要注意什么?
①移项要变号 ②合并同类项时,只有把同类项的系数相加作为所得项的系数,字母部分不变 ③ 系数化为1,要方程两边同时除以未知数前面的系数。
4、同学们还记得如何去括号吗?
化简:(1)+(2a-3b+c)=______.(2)2(x+2y-2)=_____.(3)-(4a+3b-4c)=____.(4)-3(x-y-1)=_______.让学生回忆前面学过的去括号法则,然后通过师生互动,生生互动等教学手段完成四道有代表性的含有括号的式子,这样顺理成章地引出新授知识,导入新课。
(二)新课
例1 解方程:(1)2x-(x+10)=5x+2(x-1)
(2)3x-7(x-1)=3-2(x+3)
对于例1中的方程,是本节课的教学重点,花的时间也比较多,先让学生观察该方程的特点,然后分组讨论共同完成。介于导入时提到的去括号法则,学生很容易想到有括号要去括号这种解法,并请每组代表起来描述,在学生做对时给予肯定与表扬,让他体会到成功的喜悦,提高学习的兴趣。
最后在解题过程中还要让学生解题格式规范化,在教师的启发、引导下,学生自己归纳出解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1。
(三)情景探究,解决问题
我采纳课本94页的例2,让学生在这一环节中体会到列方程解应用题更简变,也体会到数学来源于生活,数学与生活是息息相关、密不可分的,现实生活中的很多问题都用数学知识去解决。
(四)练习与小结:教科书95页练习共4个
男女生分组竞争,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。最后在师生互动中解决这些题。
(五)拓展探究,归纳总结
解方程3x-2[3(x-1)-2(x+2)]=3+(18-x)
这道方程,对刚刚接受新知的学生而言,是一道很有趣味的挑战。本题我是通过引导学生有括号应该先去括号,但要注意去括号的先后顺序;要看清括号前的系数。
(六)布置作业
在布置作业上,考虑到学生学习上的个体差异性,我准备了必做题和选做题。这些题在内容上围绕重点,巩固新知,从层次上来说是逐层深化
(七)板书设计
四、课后反思:
我将本节课定位为探究式教学活动,通过对教材进行适当的整合。让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学交流、反思等,构建对知识的形成和运用。
由小编风起云飞整理的文章解一元二次方程说课稿(精选9篇)分享结束了,希望给你学习生活工作带来帮助。